

Load tables for a transport anchor system

with Würth ASSY® 4 Combi T transport anchor self-tapping screws

d = 12 mm as defined under ETA-11/0190:2018

Threaded length Ig = 100 mm

Transport anchor system with the ASSY 4 Combi T self-tapping screw and DEHA universal coupling, load group 1-1.3

General information

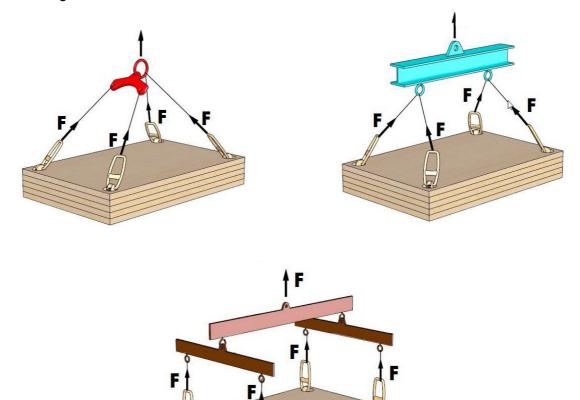
The load tables are nonbinding design aids. The load values must be reduced for shorter screw-in depths and threaded lengths.

The specifications in the European Technical Approval and in the expertise must be observed. The load bearing capacity of the transport system depends on many factors, e.g. hoist, fastening type, and properties of the transported element.

The DEHA universal coupling, load group 1-1.3, or the BGW ball head lifter can be used as the load bearing equipment. The operating instructions issued by the manufacturers must be observed. When subjected to inclined loads, the wood can be provided with a cutout that serves to reroute the horizontal components of the force directly into the wood. The screws can be driven into both undrilled and drilled wood components. In the latter case, the diameter of the drilled hole must correspond to the specifications in the ETA.

The wood components must be at least 80 mm thick.

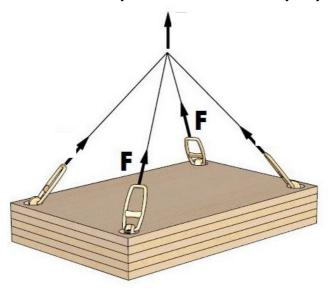
The minimum distances of the screws, specifically from the edges of the wood, must be observed.


These loads, however, can swing when suspended from a crane. It is recommended to multiply the forces acting on the transport anchor system by the specified dynamic coefficients φ .

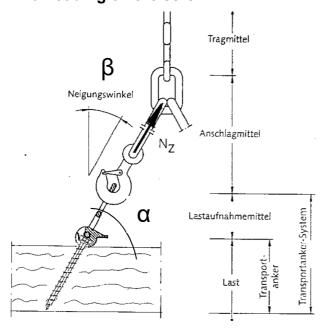
Recommended coefficients o

Lifting device	Lifting speed	Dynamic coefficient φ
Stationary crane, rotary crane		
Rail crane	< 90 m/min	1.10
Stationary crane, rotary crane		
Rail crane	≥ 90 m/min	1.30
Lifting and transporting on		1.65
level ground		
Lifting and		2.00
transporting on		

The number of anchors n defines the suspension gear used. Suspension gear consisting of more than three lines is always statically undefined when suitable measures do not distribute the load uniformly over all three.


The whole component should be secured with at least two self-tapping screws. However, it must be ensured that the screws are not driven into shrinkage cracks or similar.

Spreader beam (n = 4)



In the case of statically undefined suspension gear, BGR 500 (Section 2.8) stipulates that the anchors' dimensions must allow two of them to carry the entire load. The loads at the anchor sites must be calculated from the triangle of forces. For safety reasons, the screws may only be used **once**.

Statically undefined suspension gear (n = 2)

Fastening variant 1 Axial loading on the screw

Transport anchor under axial tensile load

Fastening variant "axial loading on screw"

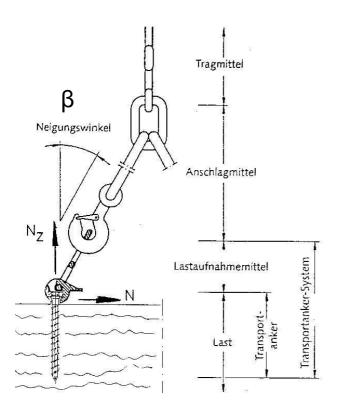
Würth $ASSY^{\mathbb{R}}$ 4 Combi T d = 12 mm, threaded length 100 mm

Attached to solid structural timber, glued laminated timber or to the side of cross-laminated timber and the face (angle between screw axis and direction of grain $\geq 45^{\circ}$)

α	$F_{ax,Rk}$	N_z	Load per attachment point					
0	in kN	in		kg				
			$\varphi = 1.0$	φ = 1.10	φ = 1.30	φ = 1.65	$\varphi = 2.00$	
90	12.0	6.15	615	559	473	373	308	
85	12.0	6.15	613	557	472	372	307	
80	12.0	6.15	606	551	466	367	303	
75	12.0	6.15	594	540	457	360	297	
70	12.0	6.15	578	526	445	350	289	
65	12.0	6.15	558	507	429	338	279	
60	12.0	6.15	533	484	410	323	266	
55	12.0	6.15	504	458	388	306	252	
50	12.0	6.15	471	429	363	286	236	
45	12.0	6.15	435	396	335	264	218	
40	11.1	5.68	365	332	281	221	182	
35	10.1	5.20	298	271	229	181	149	
30	9.2	4.72	236	214	181	143	118	

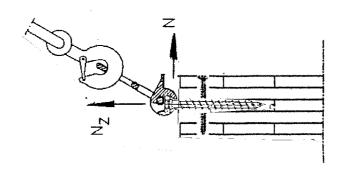
Assumptions: Characteristic density pk =350 kg/m³

The thread is anchored completely in the wood, without gaps in the component


Fastening variant "axial loading on screw"

Würth $ASSY^{\mathbb{R}}$ 4 Combi T d = 12 mm, threaded length 100 mm Attached to the face of cross-laminated timber

Load per attachment point $\alpha = \beta$ $F_{ax,Rk}$ N_z 0 in kN in kg $\varphi = 1.0$ $\varphi = 1.10$ $\varphi = 1.30$ $\varphi = 1.65$ $\varphi = 2.00$ 3.6 1.85 185 168 142 112 92 5 4.5 140 2.32 232 211 178 116 10 5.5 2.80 276 251 212 167 138 15 3.28 317 288 244 192 159 6.4 20 7.3 3.76 353 321 272 214 177 4.24 192 25 8.3 384 349 296 233 4.72 30 9.2 409 371 314 248 204 387 35 10.1 5.20 426 327 258 213 40 11.1 5.68 435 395 334 263 217 45 12.0 6.15 435 396 335 264 218



Fastening variant 2 Inclined loading on the screw

Transport anchor under inclined load

A force component acting perpendicular to the side may promote lateral tensile failure. Lateral tensile failure must be prevented by means of a reinforcement secured parallel to the face with full thread screws (see Figure below).

Full thread screws preventing lateral tensile failure in a cross-laminated timber element

Fastening variant "inclined tensile loading on screw"

Würth $ASSY^{\circledR}$ 4 Combi T d = 12 mm, threaded length 100 mm (12x120/100) Anchoring depth of the screw in the timber t_1 = 110 mm

Attached to solid structural timber, glued laminated timber or to the side of cross-

laminated timber (angle between screw axis and direction of grain $\alpha = 90^{\circ}$)

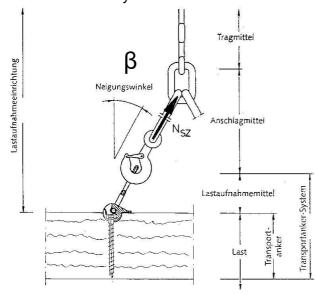
β	F_{Ed}	N_{SZ}	Load per attachment point						
0	in kN	in kN	kg						
			$\phi = 1.00$ $\phi = 1.10$		$\varphi = 1.30$	$\varphi = 1.65$	$\varphi = 2.00$		
0	8.31	6.15	615	559	473	373	308		
5	8.25	6.11	609	554	468	369	304		
10	8.09	5.99	590	537	454	358	295		
15	7.85	5.82	562	511	432	340	281		
20	7.56	5.60	526	478	405	319	263		
25	7.23	5.36	486	442	374	294	243		
30	6.91	5.12	443	403	341	269	222		
35	6.59	4.88	400 364		308	242	200		
40	6.30	4.67	358 325		275	217	179		
45	6.04	4.47	316	288	243	192	158		
50	5.81	4.30	276	251	213	168	138		
55	5.60	4.15	238	216	183	144	119		
60	5.43	4.02	201	183	155	122	101		

Attached to the face of cross-laminated timber

(angle between screw axis and direction of grain $\alpha = 0^{\circ}$)

β	F_{Ed}	N _{sz}	Load per attachment point						
0	in kN	in kN	kg						
			$\varphi = 1.00$	φ = 1.10	$\varphi = 1.30$	$\varphi = 1.65$	$\varphi = 2.00$		
0	2.49	1.85	185	168	142	112	92		
5	2.47	1.83	182	166	140	111	91		
10	2.42	1.79	176	160	136	107	88		
15	2.33	1.73	167	152	128	101	83		
20	2.23	1.65	155	141	119	94	78		
25	2.12	1.57	142	129	109	86	71		
30	2.01	1.49	129	117	99	78	65		
35	1.91	1.41	116	105	89	70	58		
40	1.82	1.34	103	94	79	62	52		
45	1.73	1.28	91	82	70	55	45		
50	1.66	1.23	79	72	61	48	39		
55	1.60	1.18	68	62	52	41	34		
60	1.54	1.14	57	52	44	35	29		

Assumptions: Characteristic density ρk =350 kg/m³


The thread is anchored completely in the wood, without gaps in the component Screws arranged at the center of a layer in the faces

Fastening variant 3

Inclined loading on the screw with coupling head precision-fitted in cutout

When the coupling head of the load bearing equipment is **precision-fitted** in a cutout, it reroutes the horizontal force component of the inclined tensile load directly into the wood.

Transport anchor under inclined tensile load-coupling head of the load bearing equipment precision-fitted in a cutout

Fastening variant "inclined tensile loading on the screw with precision-fitted cutout" Würth $ASSY^{\circledR}$ 4 Combi T d = 12 mm, threaded length 100 mm

Attached to solid structural timber, glued laminated timber, or to the side of cross-laminated timber

(angle between screw axis and direction of grain $\alpha = 90^{\circ}$)

β	$F_{ax,Rd}$	Nz	Load per attachment point					
0	in	in	kg					
			φ=1.00	$\varphi = 1.10$	φ = 1.30	φ = 1.65	$\varphi = 2.00$	
0 ÷ 60	8.31	6.15	615	559	473	373	308	

Attached to the face of cross-laminated timber

(angle between screw axis and direction of grain $\alpha = 0^{\circ}$)

β	F _{ax,Rd}	Nz	Load per attachment point						
0	in	in	kg						
			$\phi = 1.00$ $\phi = 1.10$ $\phi = 1.30$ $\phi = 1.65$ $\phi = 2.0$						
0 ÷ 60	2.49	1.85	185	168	142	112	92		

Assumptions: Characteristic density pk =350 kg/m³

The thread is anchored completely in the wood, without gaps in the component Screws arranged at the center of a layer in the faces