

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-23/0251 of 2023/03/14

General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

Würth Anchor Nails ETA-AN

Product family to which the above construction product belongs:

Nails and screws for use in nailing plates in timber structures

Manufacturer:

Adolf Würth GmbH & Co. KG Reinhold Würth Strasse 12 – 17 D-74650 Künzelsau Tel. +49 7940 15 0 Fax +49 7940 15 1000 Internet www.wuerth.com Adolf Würth GmbH & Co. KG

Manufacturing plant:

Manufacturing Plant 23

This Furences Technical 10 pages including 2 ar

This European Technical Assessment contains:

10 pages including 2 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of: European Assessment Document (EAD) no EAD 130033-00-0603 "Nails and screws for use in nailing plates in timber structures"

This version replaces:

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

Würth Anchor Nails ETA-AN are made from cold formed carbon or stainless steel thread. The shank is cylindrical and made with annular rings on part of the shank.

The nails shall be produced from carbon or stainless steel wire. Where corrosion protection is required, the material or coating shall be declared in accordance with the relevant specification given in Annex A of EN 14592. See Annex A for drawing including material and dimensions of the nails covered by this ETA.

Geometry

The range covers nails with 2 different diameters: 4,0 mm and 6,0 mm. For nails with a diameter of 4 mm the length varies from 40 mm to 100 mm. For nails with a diameter of 6 mm the length varies from 60 mm to 100 mm. These nails are all ringed shank nails. Other dimensions appear from Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The nails are used for steel and aluminium nailing plates and three-dimensional steel and aluminium nailing plates up to 12 mm thick for connections in load bearing timber structures with members of for example solid timber, glued laminated timber, cross laminated timber and similar glued members of wood-based structural members.

Steel plates shall only be located on the side of the nail head. The following wood-based panels may be used for Würth Anchor Nails ETA-AN:

- Solid wood panels according to EN 13353 and EN 13986 and cross laminated timber according to ETA
- Laminated Veneer Lumber according to EN 14374 or ETA

The nails shall be driven into the wood without predrilling.

The design of the connections shall be based on the characteristic load-carrying capacities of the nails. The

design capacities shall be derived from the characteristic capacities in accordance with Eurocode 5 or an appropriate national code.

The nails are intended for use for connections subject to static or quasi static loading.

The scope of the nails regarding resistance to corrosion shall be defined according to national provisions that apply at the installation site considering environmental conditions. Section 3.6 of this ETA contains the corrosion protection for Würth Anchor Nails ETA-AN made from carbon or stainless steel.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the Würth Anchor Nails ETA-AN of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

Characteristic	Assessment of characteristic
3.1 Mechanical resistance and stability*) (BWR1)	
Withdrawal and lateral load-carrying capacity	See Annex B
Tensile capacity	Characteristic value $f_{tens,k}$: Würth Anchor Nails ETA-AN $d=4,0$ mm: $f_{tens,k}=6.5$ kN
	Würth Anchor Nails ETA-AN $d = 6.0$ mm: $f_{tens,k} = 17.0$ kN
Corrosion	See section 3.6
3.2 Safety in case of fire (BWR2)	
Reaction to fire	The nails are made from steel classified as Euroclass A1 in accordance with EN 13501-1 and Commission Delegated Regulation 2016/364
3.3 Hygiene, health and the environment (BWR3)	
Influence on air quality	The product does not contain/release dangerous substances**)
3.4 General aspects related to the performance of the product	The nails have been assessed as having satisfactory durability and serviceability when used in timber structures using the timber species described in Eurocode 5 and subject to the conditions defined by service class 1, 2 and 3

^{*)} See additional information in section 3.5 - 3.7.

^{**)} In addition to the specific clauses relating to dangerous substances contained in this European Technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

3.5 Mechanical resistance and stability

The load-carrying capacities for Würth Anchor Nails ETA-AN are applicable to the wood-based materials mentioned in paragraph 2 even though the term timber has been used in the following.

The characteristic lateral load-carrying capacities and the characteristic axial withdrawal capacities of Würth Anchor Nails ETA-AN should be used for designs in accordance with Eurocode 5 or an appropriate national code. The formulas for the load-carrying capacities are restricted to characteristic densities of the non-predrilled wood-based materials up to 500 kg/m³. Even though the non-predrilled wood-based material may have a larger density, this must not be used in the formulas.

The capacities stated below are applicable to connections with metal plates.

The diameter of the nails shall be greater than the maximum width of the gaps in the layers of the cross laminated timber.

ETAs for structural members or wood-based panels must be considered where applicable.

Withdrawal capacity

The characteristic withdrawal capacity, $F_{ax,Rk}$, of a Würth Anchor Nails ETA-AN in non-predrilled members shall be calculated from:

$$F_{\text{ax,Rk}} = f_{\text{ax,k}} \cdot d \cdot \ell_{\text{ef}} \cdot \left(\frac{\rho_{k}}{350}\right)^{0.8} \text{ [N]}$$

Where:

 $f_{ax,k}$ is the characteristic withdrawal parameter in $N/mm^2,\,see\;Table\;1$

Table 1: Characteristic withdrawal parameters in N/mm² for Würth Anchor Nails ETA-AN

Willing for Wartin Allerion Francis E 174-741V								
Nail dxL	EP	HDG	SS					
4x40	5,96	4,48	6,11					
4x50	6,25	4,71	6,42					
4x60	6,43	4,84	6,60					
4x75	6,60	4,96	6,77					
4x100	6,73	5,06	6,90					
6x60	7,87	1	7,87					
6x80	8,37	-	8,37					
6x100	8,58	-	8,58					

EP: Carbon steel electro-plated

HDG: Carbon steel hot-dip galvanised

SS: Stainless steel

d is the nominal diameter of the nail in mm, ℓ ef is the penetration length of the threaded part, including the point length, in the point side member in mm,

 ρ_k is the characteristic timber density, $\rho k \leq 500$ kg/m³. For nails in the wide face of CLT penetrating more than one layer, the characteristic density may be assumed as for homogeneous glued laminated timber produced from boards with the lowest characteristic density of a board layer.

Lateral capacity

The characteristic lateral load-carrying capacity of a Würth Anchor Nails ETA-AN in a metal plate shall be calculated from:

$$F_{v,Rk} = min \begin{cases} 0, 4 \cdot f_{h,k} \cdot t_1 \cdot d \\ 1, 15 \cdot \sqrt{2 \cdot M_{y,Rk} \cdot f_{h,k} \cdot d} + \mu \cdot F_{ax,Rk} \end{cases} [N]$$

for thin metal plates, and

$$F_{v,Rk} = min \begin{cases} f_{h,k} \cdot t_1 \cdot d \\ f_{h,k} \cdot t_1 \cdot d \left[\sqrt{2 + \frac{4 \cdot M_{y,Rk}}{f_{h,k} \cdot d \cdot t_1^2}} - 1 \right] + \mu \cdot F_{ax,Rk} \\ 2, 3 \cdot \sqrt{M_{y,Rk} \cdot f_{h,k} \cdot d} + \mu \cdot F_{ax,Rk} \end{cases} [N]$$

for thick metal plates.

Where

f_{h,k} is the characteristic embedding strength [N/mm²] of the timber or wood-based panel according to EN 1995-1-1; for nails in the wide face of CLT penetrating more than one layer, the characteristic density may be assumed as for homogeneous glued laminated timber produced from boards with the lowest characteristic density of a board layer.

t₁ is the minimum of the nail penetration length including the tip or the timber thickness [mm];

d is the nominal nail diameter [mm];

M_{y,Rk} is the characteristic nail yield moment [Nmm];

μ is a factor for the rope effect:

 $\mu=0.8$ for nails $d=4.0\ mm$

 $\mu = 0.6$ for nails d = 6.0 mm.

Yield moment

The characteristic yield moment $M_{y,Rk}$, of a Würth Anchor Nails ETA-AN is stated in Table B.4 in Annex B depending on the nail diameter.

Thick metal plates may be assumed for the following plate thicknesses for nails in wood-based materials with a characteristic density up to 500 kg/m³:

Würth Anchor Nails ETA-AN \varnothing 4,0 mm: $t_{thick} > 1.5$ mm

Würth Anchor Nails ETA-AN \varnothing 6,0 mm: $t_{thick} \ge 2,0$ mm

The following plate thicknesses apply for thin metal plates for nails in wood-based materials with a characteristic density up to 500 kg/m³:

Würth Anchor Nails ETA-AN \varnothing 4,0 mm: $t_{thin} \ge 0.9$ mm

Würth Anchor Nails ETA-AN \emptyset 6,0 mm: $t_{thin} \ge 1,5$ mm

Minimum metal plate thicknesses are:

Würth Anchor Nails ETA-AN Ø 4,0 mm:

$$t_{min} = max \left\{ 0.9 \text{ mm; } \frac{F_{v,Rk}}{2 \cdot d \cdot f_{u,k}} \right\}$$

Würth Anchor Nails ETA-AN Ø 6,0 mm:

$$t_{min} = max \left\{ 1,5 \text{ mm; } \frac{F_{v,Rk}}{2 \cdot d \cdot f_{u,k}} \right\}$$

Where

 $f_{u,k}$ is the characteristic tensile strength [MPa] of the metal plate.

For plate thicknesses between minimum thickness t_{min} and the thickness t_{thick} linear interpolation may be used.

Combined laterally and axially loaded nails

For nailed connections subjected to a combination of axial and lateral load, the following expression should be satisfied:

$$\left(\frac{F_{ax,Ed}}{F_{ax,Rd}}\right)^2 + \left(\frac{F_{v,Ed}}{F_{v,Rd}}\right)^2 \leq 1$$

where

 $F_{ax,Ed}$ axial design load of the nail $F_{v,Ed}$ lateral design load of the nail

F_{ax,Rd} design load-carrying capacity of an axially

loaded nail

F_{v,Rd} design load-carrying capacity of a laterally

loaded nail

3.6 Aspects related to the performance of the product

3.10.1 Corrosion protection in service class 1, 2 and 3. The nails are produced from carbon or stainless steel wire. Carbon steel nails are hot-dip galvanised or electroplated. The minimum thickness of the zinc coating for electro-plated nails is $7\mu m$, for hot-dip galvanised nails $50\mu m$.

3.7 General aspects related to the fitness for use of the product

The nails are manufactured in accordance with the provisions of this European Technical Assessment using the manufacturing processes as identified in the

inspection of the plant by the notified inspection body and laid down in the technical documentation.

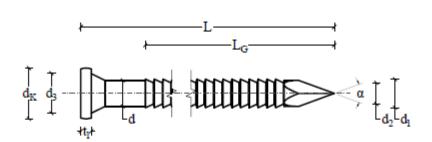
The installation shall be carried out in accordance with Eurocode 5 or an appropriate national code unless otherwise is defined in the following. Instructions from Adolf Würth GmbH & Co. KG should be considered for installation.

For structural members according to ETAs the terms of the ETAs must be considered.

4 Assessment and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 97/638/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 2+.


5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking.

Issued in Copenhagen on 2023-03-14 by

Thomas Bruun
Managing Director, ETA-Danmark

Annex A Drawing of Würth Anchor Nails ETA-AN

Geometry

d	4.00	4.00	4.00		
	±0.20	±0.20	±0.20		
d ₁	4.40	4.40	4.40		
	±0.20	±0.20	±0.20		
d ₂	3.40	3.40	3.40		
	±0.30	±0.30	±0.30		
d ₃	5.50	5.50	5.50		
	±0.50	±0.50	±0.50		
d _K	7.80	7.80	7.80		
	±0.50	±0.50	±0.50		
t ₁	1.50	1.50	1.50		
	±0.30	±0.30	±0.30		
α	40.0°	40.0°	40.0°		
	±5.0°	±5.0°	±5.0°		
	EP	HDG	SS		
Type	Carbon steel electro-plated	Carbon steel hot-dip galvanised	Stainless steel		

Geometry

d	6.00 ±0.20	6.00 ±0.20			
dı	6.60 ±0.20	6.60 ±0.20			
\mathbf{d}_2	5.50 ±0.30	5.50 ±0.30			
d ₃	7.50 ±0.50	7.50 ±0.50			
$\mathbf{d}_{\mathbf{K}}$	12.25 ±0.50	12.25 ±0.50			
t ₁	2.00 ±0.30	2.00 ±0.30			
α	55.0° ±5.0°	55.0° ±5.0°			
Туре	EP Carbon steel	SS Stainless			
	electro-plated	steel			

Lenghts and Thread Lenghts

d	L	$\mathbf{L}_{\mathbf{G}}$		
4.00	40.0	30.0		
4.00	50.0	40.0		
4.00	60.0	50.0		
4.00	75.0	65.0		
4.00	100.0	85.0		

Lenghts and Thread Lenghts

d	L	$\mathbf{L}_{\mathbf{G}}$
6.00	60.0	50.0
6.00	80.0	70.0
6.00	100.0	85.0

Headstamps

Other headstamps possible Headstamp (supplier head mark) optional
$$\label{eq:total_constraints} \begin{split} & \text{Tolerance (L and L_0): $\pm 2.00} \\ & \text{Intermediate lengths (L) are possible.} \\ & \text{Intermediate thread lengths (L_0) are possible.} \end{split}$$

All dimensions in [mm].

Annex B Characteristic capacities for Würth Anchor Nails ETA-AN

Characteristic capacities for a characteristic density of the members of solid timber, glued laminated timber, cross laminated timber, similar glued members and of wood-based structural members as indicated in Tables B.1, B.2 and B.3. The nail shall be driven without predrilling completely into the wood or wood-based material, which shall have a thickness of at least the length of the nail. The values given in Tables B.1, B.2 and B.3 presuppose that the threaded part of the nail is completely embedded in the wood or wood-based material.

Table B.1 Characteristic capacities for electro-plated Würth Anchor Nails ETA-AN EP

	ρ _k =	= 290 kg	g/m³	ρ _k =	= 320 kg	g/m^3	ρ _k =	= 350 kg	g/m³	ρ _k =	= 380 kg	g/m³	ρ _k =	= 385 kg	g/m^3
Nail	$F_{ax,Rk}$	$F_{v,Rk}$	[N]	F _{ax,Rk}	$F_{v,Rk}$	[N]	F _{ax,Rk}	$F_{v,Rk}$	[N]	F _{ax,Rk}	$F_{v,Rk}$	[N]	F _{ax,Rk}	$F_{v,Rl}$	[N]
	[N]	thin	thick	[N]	thin	thick	[N]	thin	thick	[N]	thin	thick	[N]	thin	thick
4,0 x 40	615	982	1730	665	1083	1874	715	1185	2018	763	1286	2161	771	1303	2185
4,0 x 50	861	1233	2140	931	1360	2309	1001	1488	2436	1069	1615	2559	1080	1636	2580
4,0 x 60	1107	1484	2375	1197	1637	2522	1286	1790	2665	1374	1944	2804	1388	1970	2826
4,0 x 75	1476	1860	2670	1596	2053	2841	1715	2245	3008	1832	2437	3170	1851	2469	3197
4,0 x 100	1967	2488	3063	2129	2745	3267	2287	2986	3465	2442	3159	3659	2468	3188	3690
6,0 x 60	2032	1950	3698	2198	2152	4006	2362	2354	4313	2522	2556	4617	2549	2589	4668
6,0 x 80	3023	2617	4798	3271	2888	5097	3514	3159	5387	3753	3430	5668	3792	3475	5714
6,0 x 100	3766	3284	5244	4075	3624	5580	4378	3964	5905	4676	4303	6222	4725	4360	6274
	ρ _k =	= 400 kg	g/m³	ρ _k =	= 425 kg	g/m^3	ρ _k =	= 430 kg	g/m³	ρ _k =	= 460 kg	/m³	ρ _k =	= 500 kg	g/m³
Nail	$\rho_k = F_{ax,Rk}$	T Š	g/m³ [N]		·	g/m³ k [N]	$\rho_k = F_{v,Rk}$	T Š	g/m³ k [N]	$\rho_k = F_{v,Rk}$	= 460 kg F _{ax,R} 1		$\rho_k = F_{v,Rk}$	T Š	g/m³ k [N]
Nail		T Š		$\rho_k = F_{ax,Rk}$ [N]	·			T Š						T Š	
Nail 4,0 x 40	$F_{ax,Rk}$	F _{v,Rk}	[N]	$F_{ax,Rk}$	F _{ax,R}	k [N]	$F_{v,Rk}$	F _{ax,R}	k [N]	$F_{v,Rk}$	F _{ax,R}	k [N]	$F_{v,Rk}$	F _{ax,R}	k [N]
	F _{ax,Rk} [N]	F _{v,Rk} thin	thick	F _{ax,Rk} [N]	F _{ax,R} thin	k [N] thick	F _{v,Rk} [N]	F _{ax,R} thin	k [N] thick	F _{v,Rk} [N]	F _{ax,R} l	k [N] thick	F _{v,Rk} [N]	F _{ax,R} thin	k [N] thick
4,0 x 40	F _{ax,Rk} [N] 795	F _{v,Rk} thin	thick 2256	F _{ax,Rk} [N] 835	F _{ax,R} thin 1438	thick	F _{v,Rk} [N] 843	F _{ax,R} thin 1455	thick 2398	F _{v,Rk} [N] 889	F _{ax,RI} thin	thick 2539	F _{v,Rk} [N]	F _{ax,R} thin 1692	thick 2716
4,0 x 40 4,0 x 50	F _{ax,Rk} [N] 795 1113	F _{v,Rk} thin 1354 1700	thick 2256 2640	F _{ax,Rk} [N] 835 1169	F _{ax,R} thin 1438 1806	thick 2374 2738	F _{v,Rk} [N] 843 1180	F _{ax,R} thin 1455 1828	thick 2398 2757	F _{v,Rk} [N] 889 1245	F _{ax,Ri} thin 1557 1955	thick 2539 2872	F _{v,Rk} [N] 951 1331	F _{ax,R} thin 1692 2125	thick 2716 3020
4,0 x 40 4,0 x 50 4,0 x 60	F _{ax,Rk} [N] 795 1113 1431	F _{v,Rk} thin 1354 1700 2046	thick 2256 2640 2894	F _{ax,Rk} [N] 835 1169 1503	F _{ax,R} thin 1438 1806 2174	thick 2374 2738 3005	F _{v,Rk} [N] 843 1180 1517	F _{ax,R} thin 1455 1828 2200	thick 2398 2757 3027	F _{v,Rk} [N] 889 1245 1601	F _{ax,Rl} thin 1557 1955 2353	thick 2539 2872 3156	F _{v,Rk} [N] 951 1331 1711	F _{ax,R} thin 1692 2125 2558	thick 2716 3020 3324
4,0 x 40 4,0 x 50 4,0 x 60 4,0 x 75	F _{ax,Rk} [N] 795 1113 1431 1909	F _{v,Rk} thin 1354 1700 2046 2566	thick 2256 2640 2894 3276	F _{ax,Rk} [N] 835 1169 1503 2003	F _{ax,R} thin 1438 1806 2174 2726	thick 2374 2738 3005 3405	F _{v,Rk} [N] 843 1180 1517 2022	F _{ax,R} thin 1455 1828 2200 2758	thick 2398 2757 3027 3431	F _{v,Rk} [N] 889 1245 1601 2134	F _{ax,R} l thin 1557 1955 2353 2950	thick 2539 2872 3156 3583	F _{v,Rk} [N] 951 1331 1711 2282	F _{ax,R} thin 1692 2125 2558 3207	thick 2716 3020 3324 3781
4,0 x 40 4,0 x 50 4,0 x 60 4,0 x 75 4,0 x 100	F _{ax,Rk} [N] 795 1113 1431 1909 2545	F _{v,Ri} thin 1354 1700 2046 2566 3272	thick 2256 2640 2894 3276 3785	F _{ax,Rk} [N] 835 1169 1503 2003 2671	F _{ax,R} thin 1438 1806 2174 2726 3412	thick 2374 2738 3005 3405 3940	F _{v,Rk} [N] 843 1180 1517 2022 2696	F _{ax,R} thin 1455 1828 2200 2758 3439	thick 2398 2757 3027 3431 3970	F _{v,Rk} [N] 889 1245 1601 2134 2846	F _{ax,R} thin 1557 1955 2353 2950 3603	thick 2539 2872 3156 3583 4152	F _{v,Rk} [N] 951 1331 1711 2282 3042	F _{ax,R} thin 1692 2125 2558 3207 3816	thick 2716 3020 3324 3781 4389

Table B.2 Characteristic capacities for hot-dip galvanised Würth Anchor Nails ETA-AN - HDG

	ρ _k =	= 290 kg	g/m³	ρ _k =	= 320 kg	g/m³	ρ _k =	= 350 kg	g/m³	ρ _k =	= 380 kg	g/m³	ρ _k =	= 385 kg	g/m^3
Nail	$F_{ax,Rk}$	$F_{v,Rk}$	[N]	F _{ax,Rk}	$F_{v,Rl}$	[N]	F _{ax,Rk}	$F_{v,Rk}$	[N]	F _{ax,Rk}	$F_{v,Rk}$	[N]	$F_{ax,Rk}$	$F_{v,R}$	[N]
	[N]	thin	thick	[N]	thin	thick	[N]	thin	thick	[N]	thin	thick	[N]	thin	thick
4,0 x 40	463	982	1559	501	1083	1694	538	1185	1827	574	1286	1960	580	1303	1982
4,0 x 50	648	1233	1841	701	1360	1950	753	1488	2055	804	1615	2157	812	1636	2174
4,0 x 60	833	1484	1989	901	1637	2110	968	1790	2227	1034	1898	2341	1045	1913	2360
4,0 x 75	1110	1824	2211	1201	1943	2350	1291	2060	2486	1378	2173	2617	1393	2192	2638
4,0 x 100	1480	2120	2507	1602	2264	2671	1721	2404	2830	1838	2541	2984	1857	2563	3010
	ρ _k =	= 400 kg	g/m³	ρ _k =	= 425 kg	g/m³	ρ _k =	= 430 kg	g/m³	ρ _k =	= 460 kg	g/m³	ρ_k =	= 500 kg	g/m^3
Nail	$F_{ax,Rk}$	$F_{v,Rk}$	[N]	F _{ax,Rk}	$F_{v,Rl}$	[N]	F _{ax,Rk}	$F_{v,Rk}$	[N]	F _{ax,Rk}	$F_{v,Rk}$	[N]	F _{ax,Rk}	$F_{v,Rl}$	[N]
	[N]	thin	thick	[N]	thin	thick	[N]	thin	thick	[N]	thin	thick	[N]	thin	thick
4,0 x 40	598	1354	2032	628	1438	2104	634	1455	2118	669	1557	2201	715	1692	2309
4,0 x 50	838	1700	2224	879	1806	2305	888	1828	2321	937	1927	2415	1001	2029	2538
4,0 x 60	1077	1960	2415	1131	2037	2506	1141	2052	2524	1204	2141	2629	1288	2258	2767
4,0 x 75	1436	2247	2702	1507	2338	2807	1522	2356	2828	1606	2463	2951	1717	2601	3110
4,0 x 100	1915	2630	3085	2010	2740	3209	2029	2762	3234	2141	2891	3379	2289	3059	3568

Table B.3 Characteristic capacities for stainless steel Würth Anchor Nails ETA-AN - SS

	ρ_k =	= 290 kg	g/m³	ρ _k =	= 320 kg	g/m³	ρ _k =	= 350 kg	g/m³	ρ_k =	= 380 kg	g/m³	ρ_k =	= 385 kg	g/m³
Nail	$F_{ax,Rk}$	$F_{v,Rk}$	[N]	F _{ax,Rk}	$F_{v,Rl}$	[N]	F _{ax,Rk}	$F_{v,Rk}$	[N]	F _{ax,Rk}	$F_{v,Rk}$	[N]	F _{ax,Rk}	$F_{v,Rl}$	[N]
	[N]	thin	thick	[N]	thin	thick	[N]	thin	thick	[N]	thin	thick	[N]	thin	thick
4,0 x 40	631	982	1760	683	1083	1905	733	1185	2050	783	1286	2194	791	1303	2218
4,0 x 50	883	1233	2172	956	1360	2361	1027	1488	2517	1096	1615	2644	1108	1636	2665
4,0 x 60	1136	1484	2452	1229	1637	2605	1320	1790	2752	1410	1944	2895	1425	1970	2918
4,0 x 75	1514	1860	2755	1638	2053	2932	1760	2245	3104	1880	2437	3271	1899	2469	3298
4,0 x 100	2019	2488	3159	2184	2745	3369	2347	3002	3573	2506	3255	3772	2532	3284	3805
6,0 x 60	2032	1950	3723	2198	2152	4031	2362	2354	4338	2522	2556	4643	2549	2589	4693
6,0 x 80	3023	2617	4878	3271	2888	5182	3514	3159	5475	3753	3430	5760	3792	3475	5806
6,0 x 100	3766	3284	5324	4075	3624	5664	4378	3964	5994	4676	4303	6313	4725	4360	6366
	ρ _k =	= 400 kg	g/m³	ρ _k =	= 425 kg	g/m³	ρ _k =	= 430 kg	g/m³	ρ _k =	= 460 kg	g/m³	ρ _k =	= 500 kg	g/m³
Nail	$F_{ax,Rk} \\$	$F_{v,Rk}$	[N]	$F_{ax,Rk}$	$F_{v,Rl}$	[N]	$F_{ax,Rk}$	$F_{v,R}$	[N]	F _{ax,Rk}	$F_{v,Rk}$	[N]	F _{ax,Rk}	$F_{v,Rl}$	[N]
	[N]	thin	thick	[N]	thin	thick	[N]	thin	thick	[N]	thin	thick	[N]	thin	thick
4,0 x 40	816	1354	2290	857	1438	2409	865	1455	2433	912	1557	2575	975	1692	2764
4,0 x 50	1142	1700	2727	1199	1806	2828	1210	1828	2848	1277	1955	2966	1366	2125	3120
4,0 x 60	1469	2046	2988	1542	2174	3102	1556	2200	3125	1642	2353	3258	1756	2558	3432
4,0 x 75	1958	2566	3380	2056	2726	3514	2075	2758	3540	2190	2950	3696	2341	3207	3900
4,0 x 100	2611	3371	3902	2741	3514	4062	2767	3543	4093	2920	3711	4280	3121	3931	4524
6,0 x 60	2628	2690	4845	2759	2858	5096	2785	2892	5147	2939	3094	5447	3142	3363	5846
6,0 x 80	3910	3610	5945	4104	3836	6173	4143	3881	6217	4373	4152	6483	4674	4513	6829
6,0 x 100	4872	4530	6522	5114	4813	6778	5162	4870	6829	5448	5209	7128	5824	5662	7518

F_{ax,Rk} Characteristic withdrawal (axial) capacity per nail

Values for other densities (ρ_k) up to 500 kg/m³ may be calculated by multiplying the values for $\rho_k = 350 \text{ kg/m}^3$ with $(\rho_k/350)^{0.8}$

 $F_{v,Rk}$ Characteristic load-carrying capacity per shear plane per nail

Thin refers to a plate thickness = 0.9 mm for d = 4.0 mm and a plate thickness = 1.5 mm for d = 6.0 mm Thick refers to a plate thickness = 1.5 mm for d = 4.0 mm and a plate thickness = 2.0 mm for d = 6.0 mm

Table B.4 Characteristic yield moments for Würth Anchor Nails ETA-AN

	Nail diameter [mm]	M _{y,Rk} [Nmm]
4,0	EP	6680
4,0	HDG	5270
4,0	SS	7180
6,0	EP	20200
6,0	SS	21300
	EP: Carbon steel electro-plated	
	HDG: Carbon steel hot-dip galvanis	ed
	SS: Stainless steel	