

LEISTUNGSERKLÄRUNG

Nr. LE_0903450200_01_M_WIT-VM 250 (1)

1. Eindeutiger Kenncode des Produktes

Würth Injektionssystem WIT-VM 250 und WIT-Nordic Art. Vornummer: 0903 450 2*; 0903 450 102; 0905 46*; 0905 47*; 5915 1*; 5915 2*; 5915 3*; 5916 0*; 5916 1*; 5916 2*; 5916 408 110; 5916 410 130; 5916 412 160; 5916 416 190 ausgenommen nachstehende Artikel:

 Typen-, Chargen- oder Seriennummer oder ein anderes Kennzeichen zur Identifikation des Bauproduktes gemäß Artikel 11 Absatz 4

ETA-12/0164, Anhang A2 Chargennummer: Siehe Verpackung

3. Verwendungszweck(e):

Produkttyp	Verbunddübel mit Ankerstange in den Größen M8 bis M30 und Bewehrungsstahl Ø8
	bis Ø32 zur Verankerung in Beton
Für die Verwendung in	Gerissenem und ungerissenem Beton C20/25 bis C50/60 (EN 206:2000-12)
Option	1
Belastung	Statische und quasi-statische Lasten, Erdbeben C1
Material	Stahl verzinkt:
	Nur in trockenen Innenräumen
	Enthaltene Größen: M8 bis M30
	Nichtrostender Stahl (A4):
	Innen- und Außenbereiche ohne besonders aggressiven Bedingungen
	Enthaltene Größen: M8 bis M30
	Hochkorrosionsbeständiger Stahl (HCR)
	Innen- und Außenbereiche unter besonders aggressiven Bedingungen
	Enthaltene Größen: M8 bis M30
	Betonstahl
	Klasse B und C gemäß EN 1992-1-1 Anhang C
	Enthaltene Größen: Ø8 bis Ø32
Verwendungszweck	 Einbau in trockenem, feuchtem Beton (alle Größen) oder wassergefülltem Bohrloch (nur M8 bis M16 und BSt Ø8 bis Ø16)
	Überkopfmontage
	Anwendung in ungerissenem Beton: M8 bis M30, BSt Ø8 bis Ø32
	Anwendung in digenssellen beloh. Mo bis M30, B31 Ø8 bis Ø32 Anwendung in gerissenem Beton und Seismic C1: M8 bis M30, BSt Ø8 bis Ø32
Temperaturbereich	Bereich I: -40°C bis +40°C
remperatorbereich	
	(max. Kurzzeittemperatur +40°C, max. Langzeittemperatur +24°C) • Bereich II: -40°C bis +80°C
	(max. Kurzzeittemperatur +80°C, max. Langzeittemperatur +50°C)
	Bereich III: -40°C bis +120°C
	(max. Kurzzeittemperatur +120°C, max. Langzeittemperatur +72°C)

4. Hersteller gemäß Artikel 11 Absatz 5

Adolf Würth GmbH & Co. KG Reinhold-Würth-Str. 12 - 17 D – 74653 Künzelsau

5. Bevollmächtigter nach Artikel 12 Absatz 2

Nicht relevant

- System(e) zur Bewertung und Überprüfung der Leistungsbeständigkeit des Bauprodukts gemäß Anhang V
 System 1
- 7. a) Wenn das Bauprodukt von einer harmonisierten Norm erfasst wird:

EN Nummer und AUSGABEDATUM

Wenn 7a) zutrifft dann notifizierte Stelle(n)

Kennummer der notifizierten Stelle

7. b) Wenn dem Bauprodukt ein Europäisches Bewertungsdokument zugrunde liegt

ETAG 001 Teil 1 + 5 (27.06.2013)

Wenn 7b) zutrifft dann Europäisch Technische Bewertung

ETA-12/0164 - erteilt am 12.11.2015

Technische Bewertungsstelle

Deutsches Institut für Bautechnik DIBt

Notifizierte Stelle

MPA Darmstadt (1343)

8. Erklärte Leistung(en)

Erklärung: Bei harmonisierten technischen Spezifikationen die wesentlichen Merkmale für den/die Verwendungszweck(e) nach Nummer 2

Die Leistung für jedes wesentliche Merkmal nach Stufe oder Klasse. Falls keine Leistung erklärt wird dann "NPD" (no performance determined / Keine Leistung bestimmt)

Wesentliche Merkmale	Bemessungsmethode	Leistung	Harmonisierte technische Spezifikation
Charakteristische Werte bei	EOTA Technical Report TR 029	ETA-12/0164,	ETAG 001 Teil 1+5
Zugbeanspruchung	CEN/TS 1992-4:2009	Anlage C1, C3	
Charakteristische Werte bei	EOTA Technical Report TR 029	ETA-12/0164,	
Querbeanspruchung	CEN/TS 1992-4:2009	Anlage C2, C4	
Charakteristischer	EOTA Technical Report TR 045	ETA-12/0164,	
seismischer Widerstand		Anlage C1, C2, C3, C4	
Verschiebungen für den	EOTA Technical Report TR 029	ETA-12/0164,	
Gebrauchstauglichkeits- nachweis	CEN/TS 1992-4:2009	Anlage C5, C6	

 Wenn gemäß den Artikeln 37 und 38 eine angemessene technische Dokumentation und/oder Spezifische Technische Dokumentation verwendet wurde

a) REFERENZNUMMER zur verwendeten Dokumentation b) Anforderungen die das Produkt erfüllt

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung / den erklärten Leistungen. Für die Erstellung der Leistungerklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist alleine der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Frank Wolpert

(Prokurist Leiter Produktmanagement)

Künzelsau, 25.02.2016

Dr.-Ing. Siegfried Beichter

(Prokurist Leiter Qualität)

Anhang C1, Tabelle C1: Charakteristische Werte bei Zugbeanspruchung

Dübelgröße Gewindes	tangen			M 8	M 10	M 12	M 16	M 20	M24	M27	M30	
Stahlversagen												
Charakteristische Zugtra	ngfähigkeit	N _{Rk,s} =N _{Rk,s,seis}	[kN]				As	• f _{uk}				
Kombiniertes Versage	n durch Herausziehen und Be	tonausbruch										
Charakteristische Verbu	ndtragfähigkeit im ungerissener	Beton C20/25	i									
Temperaturbereich I:	trockener und feuchter Beton	TRk,ucr	[N/mm²]	10	12	12	12	12	11	10	9	
40°C/24°C	wassergefülltes Bohrloch	TRk,ucr	[N/mm²]	7,5	8,5	8,5	8,5		nicht z	ulässig		
Temperaturbereich II:	trockener und feuchter Beton	TRk,ucr	[N/mm²]	7,5	9	9	9	9	8,5	7,5	6,5	
80°C/50°C	wassergefülltes Bohrloch	T _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5		nicht z	ulässig		
Temperaturbereich III:	trockener und feuchter Beton	TRk,ucr	Rk,ucr [N/mm²] 5,5 6,5 6,5 6,5				6,5	6,5	5,5	5,0		
120°C/72°C	wassergefülltes Bohrloch	TRk,ucr	[N/mm²]	4,0	5,0	5,0	5,0		nicht z	ulässig		
Charakteristische Verbu	ndtragfähigkeit im gerissenen B	eton C20/25										
	trockener und feuchter Beton	T _{Rk,cr}	[N/mm²]	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5	
Temperaturbereich I:	trockener und feuchter Beton	τ _{Rk,seis}	[N/mm²]	2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5	
40°C/24°C	wassarasfilltas Bahrlash	τ _{Rk,cr}	[N/mm²]	4,0	4,0	5,5	5,5		nicht z	ulässig		
	wassergefülltes Bohrloch	TRk,seis	[N/mm²]	2,5	2,5	3,7	3,7		nicht z	ulässig		
	trackenes and fauchter Dates	τ _{Rk,cr}	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5	
Temperaturbereich II:	trockener und feuchter Beton	τ _{Rk,seis}	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1	
80°C/50°C		T _{Rk,cr}	[N/mm²]	2,5	3,0	4,0	4,0		nicht z	ulässig		
	wassergefülltes Bohrloch	T _{Rk,seis}	[N/mm²]	1,6	1,6 1,9 2,7 2,7 nicht z			ulässig				
emperaturbereich III:	trockener und feuchter Beton	T _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5	
		τ _{Rk,seis}	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4	
120°C/72°C	5-962330 News 425 30 22	τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0		nicht z	ulässig		
	wassergefülltes Bohrloch	TRk,seis	[N/mm²]	1,3 1,6 2,0 2,0				nicht zulässig				
		C25/3	1,02									
Eshähungafaktas fils Bat		C30/3	1,04									
Erhöhungsfaktor für Bet (Nur statische oder quas	si-statische Beanspruchung)	C35/4	250				008	07				
Ψο	σ,	C40/5	7.57	1,08								
		C45/5						09				
Faktor gemäß CEN/TS	Ungerissener Beton	C50/6	1					10				
1992-4-5 Kapitel 6.2.2.3		-K ₈	[-]					.2				
Betonausbruch												
Faktor gemäß CEN/TS	Ungerissener Beton	Kucr					10),1				
1992-4-5 Kapitel 6.2.3.1		k _{cr}	[-]					,2				
Randabstand		C _{cr,N}	[mm]				1,5	h _{ef}				
Achsabstand		S _{cr,N}	[mm]				3,0	h _{ef}				
Spalten	,											
Randabstand	C _{cr,sp}	[mm]	m] $1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right) \le$)≤ 2,4	· h _{ef}					
Achsabstand	S _{cr,sp}	[mm]	[mm]			2 0	2 C _{cr,sp}					
Montagesicherheitsbeiw (trockener und feuchter	Beton)	γ2 = Yinst		1,0				1,2				
Montagesicherheitsbeiw (wassergefülltes Bohrloo		γ2 = γinst			1	,4			nicht z	ulässig		

Anhang C2, Tabelle C2: Charakteristische Werte bei Querbeanspruchung

Dübelgröße Gewindestangen			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Stahlversagen ohne Hebelarm										
Observation by Overden of Shinks it	V _{Rk,s}	[kN]				0,50 •	$A_s \cdot f_{uk}$			
Charakteristische Quertragfähigkeit	V _{Rk,s,seis}	[kN]				0,35 •	$A_s \cdot f_{uk}$			
Duktilitätsfaktor gemäß CEN/TS 1992-4-5 Kapitel 6.3.2.1	k ₂					0	,8			
Stahlversagen mit Hebelarm										
Charaldariation of Discourant	M ⁰ _{Rk,s}	[Nm]				1.2 • \	N _{el} ∙ f _{uk}			
Charakteristisches Biegemoment	M ⁰ _{Rk,s,seis}	[Nm]			Keine	Leistung	bestimm	t (NPD)		
Betonausbruch auf der lastabgewandten Seite										
Faktor k₃ in Gleichung (27) der CEN/TS 1992-4-5 Kapitel 6.3.3 Faktor k in Gleichung (5.7) des Technical Report TR 029 Kapitel 5.2.3.3	k ₍₃₎					2	,0			
Montagesicherheitsbeiwert	γ ₂ = γ _{inst}					1	,0			
Betonkantenbruch										
Effektive Ankerlänge	lf	[mm]				I _f = min(h	n _{ef} ; 8 d _{nom})			
Aussendurchmesser des Ankers	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Montagesicherheitsbeiwert	γ ₂ = γ _{inst}					1	,0			

Anhang C3, Tabelle C3: Charakteristische Werte bei Zugbeanspruchung

Dübelgröße Betonst	übelgröße Betonstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen													
Charakteristische Zug	tragfähigkeit	N _{Rk,s} =N _{Rk,s,seis}		[kN]					$A_s \cdot f_{uk}$				
Kombiniertes Versag	gen durch Hera	ausziehen und B	etonau	sbruch									
Charakteristische Ver	bundtragfähigk	eit im ungerissene	n Betor	C20/25									
Temperaturbereich I:	trockener un	d feuchter Beton	τ _{Rk,ucr}	[N/mm²]	10	12	12	12	12	12	11	10	8,5
40°C/24°C	wassergefüll	tes Bohrloch	τ _{Rk,ucr}	[N/mm²]	7,5	8,5	8,5	8,5	8,5		nicht z	ulässig	
Temperaturbereich II:	trockener un	d feuchter Beton	τ _{Rk,ucr}	[N/mm²]	7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,0
80°C/50°C	wassergefüll	tes Bohrloch	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5		nicht z	ulässig	
Temperaturbereich III	trockener un	d feuchter Beton	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	wassergefüll	tes Bohrloch	τ _{Rk,ucr}	[N/mm²]	4,0	5,0	5,0	5,0	5,0		nicht z	ulässig	
Charakteristische Ver	bundtragfähigk	eit im gerissenen	Beton C	20/25	2		7						
	trackanarun	d feuchter Beton	τ _{Rk,cr}	[N/mm²]	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
Temperaturbereich I:	trockener un	a reuchter Beton	τ _{Rk,seis}	[N/mm²]	2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C	wassaraafiill	tes Bohrloch	τ _{Rk,cr}	[N/mm²]	4,0	4,0	5,5	5,5	5,5		nicht z	ulässig	
	wassergerun	les bonnoch	τ _{Rk,seis}	[N/mm²]	2,5	2,5	3,7	3,7	3,7		nicht z	ulässig	
	trockener un	d feuchter Beton	τ _{Rk,cr}	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
Temperaturbereich II:		d ledcifier beton	τ _{Rk,seis}	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
80°C/50°C	wassergefüll	tes Bohrloch	τ _{Rk,cr}	[N/mm²]	2,5	3,0	4,0	4,0	4,0		nicht z	ulässig	
	Wassergerun	nes bonnoch	τ _{Rk,seis}	[N/mm²]	1,6	1,9	2,7	2,7	2,7		nicht z	ulässig	
	trockener un	trockener und feuchter Beton		[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5
Temperaturbereich III			τ _{Rk,seis}	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
120°C/72°C	wassernefüll	tes Bohrloch	T _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0	3,0		nicht z	ulässig	
	Wassergerun	nes bonnoch	τ _{Rk,seis}	[N/mm²]	1,3 1,6 2,0 2,0 2,0 nicht zulässig								
				25/30	1,02								
Erhöhungsfaktor für B	leton			30/37					1,04				
(Nur statische oder qu		eanspruchung)		35/45					1,07	-	4		
Ψε		A 1000		40/50		1,08							
				45/55 50/60					1,09		-		
Faktor gemäß	Ungerissener E	Poton	-	30/00			-	-	1,10	-+-			
CEN/TS 1992-4-5			k ₈	[-]				-					
Rapiter 0.2.2.5	Gerissener Ber	ton							7,2	-			
Betonausbruch													
Faktor gemäß CEN/TS 1992-4-5	Ungerissener E	Beton	k _{ucr}	[-]					10,1				
Kapitel 6.2.3.1	Gerissener Ber	ton	k _{cr}	[-]					7,2				
Randabstand			C _{cr,N}	[mm]					1,5 h _{ef}				
Achsabstand	abstand		S _{cr,N}	[mm]					3,0 h _{ef}				
Spalten													
Randabstand			C _{cr,sp}	[mm]			1,0 · h _{ef}	≤2·h _e	_{ef} (2,5 –	$\left(\frac{h}{h_{ef}}\right) \le$	2,4 · h _e	f	
Achsabstand			S _{cr,sp}	[mm]					2 C _{cr,sp}				
Montagesicherheitsbe			γ ₂ = γ _{inst}		1,0					,2			
(trockener und feuchte Montagesicherheitsbe (wassergefülltes Bohr	eiwert		γ ₂ = γ _{inst}		100		1,4		-		nicht z	ulässig	

Anhang C4, Tabelle C4: Charakteristische Werte bei Querbeanspruchung

Dübelgröße Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm	-										
Charaktariatiaaha Quartraafiihiakait	V _{Rk,s}	[kN]				0,	50 • A _s •	f _{uk}			
Charakteristische Quertragfähigkeit	V _{Rk,s,seis}	[kN]				0,	35 • A _s •	f _{uk}			
Duktilitätsfaktor gemäß CEN/TS 1992-4-5 Kapitel 6.3.2.1	k ₂						0,8				
Stahlversagen mit Hebelarm											
Charakteristicaka Riagomomont	M ⁰ _{Rk,s}	[Nm]				1.	2 · W _{el} ·	fuk			
Charakteristische Biegemoment	M ⁰ _{Rk,s,seis}	[Nm]			Kein	e Leist	ung bes	stimmt ((NPD)		
Betonausbruch auf der lastabgewandten Seite											
Faktor k₃ in Gleichung (27) der CEN/TS 1992-4-5 Kapitel 6.3.3 Faktor k in Gleichung (5.7) des Technical Report TR 029 Kapitel 5.2.3.3	k ₍₃₎			100 000 111			2,0				
Montagesicherheitsbeiwert	Y2 = Yinst						1,0				
Betonkantenbruch											
Effektive Ankerlänge	If	[mm]				I _f = m	nin(h _{ef} ; 8	d _{nom})			
Aussendurchmesser des Ankers	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Montagesicherheitsbeiwert	γ2 = γinst						1,0			<i>0</i> 7	

Anhang C5

Tabelle C5: Verschiebung unter Zugbeanspruchung¹⁾ (Ankerstange)

Dübelgröße Gewin	destangen		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Ungerissener Beto	on C20/25									
Temperaturbereich I:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
40°C/24°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
80°C/50°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperaturbereich III:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
120°C/72°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Gerissener Beton	C20/25									
Temperaturbereich I:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,0	90			0,0	70		
40°C/24°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,1	105			0,1	105		
Temperaturbereich II:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,2	219			0,1	170		
80°C/50°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,2	255			0,2	245		
Temperaturbereich III:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,2	219			0,1	170		
120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,2	255			0,2	245		

 $\begin{array}{ll} ^{1)} \mbox{ Berechnung der Verschiebung} \\ \delta_{N0} = \delta_{N0} \mbox{-Faktor} \ \cdot \ \tau; & \tau \mbox{: einwirkende Verbundspannung unter Zugbelastung} \end{array}$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -Faktor $\cdot \tau$;

Tabelle C6: Verschiebung unter Querbeanspruchung¹⁾ (Ankerstange)

Dübelgröße Gewindestangen		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Ungerissener Beto	n C20/25					.				
Alle	δ _{v0} -Faktor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Temperaturbereiche	δ _{V∞} -Faktor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Gerissener Beton	C20/25									
Alle	δ _{v0} -Faktor	[mm/(kN)]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
Temperaturbereiche	δ _{V∞} -Faktor	[mm/(kN)]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

Berechnung der Verschiebung $\delta_{\text{VO}} = \delta_{\text{VO}}$ -Faktor · V; V: einwirkende Querlast

 $\delta_{V0} = \delta_{V0}$ -Faktor · V; $\delta_{V\infty} = \delta_{V\infty}$ -Faktor · V;

Anhang C6

Tabelle C7: Verschiebung unter Zugbeanspruchung¹⁾ (Betonstahl)

Dübelgröße Betor	nstahl		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Ungerissener Bet	on C20/25						•				
Temperaturbereich I:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperaturbereich II:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperaturbereich III:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Gerissener Beton	C20/25										
Temperaturbereich I:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,0	90				0,070			
40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,1	05				0,105			
Temperaturbereich II:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,2	219	J.1			0,170			
80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,2	255				0,245			
Temperaturbereich III:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,2	219				0,170			
120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,2	255				0,245			

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

τ: einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -Faktor $\cdot \tau$;

Tabelle C8: Verschiebung unter Querbeanspruchung¹⁾ (Betonstahl)

Dübelgröße Beto	nstahl		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Ungerissener Be	ton C20/25										
Alle	δ _{v0} -Faktor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
Temperaturbereiche	δ _{V∞} -Faktor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Gerissener Betor	n C20/25	115									
Alle	δ _{v0} -Faktor	[mm/(kN)]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
Temperaturbereiche	δ _{V∞} -Faktor	[mm/(kN)]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Berechnung der Verschiebung

V: einwirkende Querlast

 $\delta_{V0} = \delta_{V0}$ -Faktor · V; $\delta_{V\infty} = \delta_{V\infty}$ -Faktor · V;