

LEISTUNGSERKLÄRUNG

Nr. LE_0903480001_01_M_WIT-PE 500 (2)

1. Eindeutiger Kenncode des Produktes

Würth Injektionssystem WIT-PE 500 Art. Vornummer: 0903 480 *

 Typen-, Chargen- oder Seriennummer oder ein anderes Kennzeichen zur Identifikation des Bauproduktes gemäß Artikel 11 Absatz 4

ETA-07/0313, Anhang A1 Chargennummer: Siehe Verpackung

3. Verwendungszweck(e):

Verwendungszweck(e):					
Produkttyp	Nachträglich eingemörtelter Bewehrungsanschluss mit dem Würth Injektionssystem				
	WIT-PE 500. Für den Bewehrungsanschluss wird Betonstahl mit einem Durchmesser				
	Ø8 bis Ø32 mm oder der Zuganker ZA in den Größen M12 bis M24 und dem				
	Injektionsmörtel Würth WIT-PE 500 verwendet.				
Für die Verwendung in	Bewehrter oder unbewehrter Normalbeton gemäß EN 206-1:2000				
	Festigkeitsklasse C12/15 bis C50/60 gemäß EN 206-1:2000				
	Maximal zulässiger Chloridgehalt im Beton von 0.40 % (CL 0.40) bezogen auf				
	den Zementgehalt gemäß EN 206-1:2000				
	nicht karbonatisiertem Beton				
Option	EN 1992-1-1:2004 + AC:2010				
Belastung	Statische und quasi-statische Lasten				
	Brandbeanspruchung				
Material	Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C				
	Stäbe und Betonstabstahl vom Ring Klasse B oder C,				
	Enthaltene Größen: Ø8 bis Ø32				
	Zuganker Größen M12 bis M24:				
	Betonstabstahl Klasse B gemäß NDP oder NCL gemäß EN 1992-1-1/NA:2013				
	ZA vz: Stahl verzinkt gemäß EN 10087:1998 oder EN 10263:2001				
	• ZA A4: Nichtrostender Stahl, 1.4362, 1.4401, 1.4404, 1.4571,				
	EN 10088-1:2014				
	 ZA HCR: Hochkorrosionsbeständiger Stahl, 1.4529, 1.4565, 				
	EN 10088-1:2014				
Verwendungszweck	Einbau in trockenem oder nassem Beton				
	(Einbau in wassergefüllte Bohrlöcher ist nicht erlaubt)				
	Übergreifungsstoß für Bewehrungsanschlüsse von Platten und Balken				
	Übergreifungsstoß einer biegebeanspruchten Stütze oder Wand an ein Fundamen				
	Endverankerung von Platten oder Balken				
	Bewehrungsanschlüsse überwiegend auf Druck beanspruchter Bauteile				
	Verankerung von Bewehrung zur Deckung der Zugkraftlinien				
	Übergreifungsstoß einer biegebeanspruchten Stütze an ein Fundament (ZA)				
	Übergreifungsstoß für die Verankerung von Geländerpfosten (ZA)				
	Übergreifungsstoß für die Verankerung von auskragenden Bauteilen (ZA)				
Temperaturbereich	Bereich: -40°C bis +80°C				
	(max. Kurzzeittemperatur +80°C, max. Langzeittemperatur +50°C)				

4. Hersteller gemäß Artikel 11 Absatz 5

Adolf Würth GmbH & Co. KG Reinhold-Würth-Str. 12 - 17 D - 74653 Künzelsau

5. Bevollmächtigter nach Artikel 12 Absatz 2

Nicht relevant

- 6. System(e) zur Bewertung und Überprüfung der Leistungsbeständigkeit des Bauprodukts gemäß Anhang V

 System 1
- 7. a) Wenn das Bauprodukt von einer harmonisierten Norm erfasst wird:

EN Nummer und AUSGABEDATUM

Wenn 7a) zutrifft dann notifizierte Stelle(n)

Kennummer der notifizierten Stelle

7. b) Wenn dem Bauprodukt ein Europäisches Bewertungsdokument zugrunde liegt

EAD 330087-00-0601

Wenn 7b) zutrifft dann Europäisch Technische Bewertung

ETA-07/0313 - erteilt am 27.02.2018

Technische Bewertungsstelle

Deutsches Institut für Bautechnik DIBt

Notifizierte Stelle

MPA Darmstadt (1343)

8. Erklärte Leistung(en)

Erklärung: Bei harmonisierten technischen Spezifikationen die wesentlichen Merkmale für den/die Verwendungszweck(e) nach Nummer 2

Die Leistung für jedes wesentliche Merkmal nach Stufe oder Klasse. Falls keine Leistung erklärt wird dann "NPD" (no performance determined / Keine Leistung bestimmt)

Wesentliche Merkmale	Bemessungsmethode	Leistung	Harmonisierte technische
			Spezifikation
Bemessungswerte für die	EN 1992-1-1:2004+AC:2010	ETA-07/0313,	EAD 330087-00-0601
Verbundspannung		Anhang C1	
Minimale Verankerungslänge und	EN 1992-1-1:2004+AC:2010	ETA-07/0313,	
minimale Übergreifungslänge		Anhang C1	
Bemessungswert der Verbund-		ETA-07/0313,	
spannung unter Brandbeanspruchung		Anhang C2	
Charakteristische Zugtragfähigkeit für		ETA-07/0313,	
Zuganker ZA unter		Anhang C3	
Brandbeanspruchung			

9. Wenn gemäß den Artikeln 37 und 38 eine angemessene technische Dokumentation und/oder Spezifische Technische Dokumentation verwendet wurde

a) REFERENZNUMMER zur verwendeten Dokumentation b) Anforderungen die das Produkt erfüllt

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung / den erklärten Leistungen. Für die Erstellung der Leistungerklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist alleine der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Frank Wolpert

(Prokurist Leiter Produktmanagement)

Künzelsau, 26.04.2018

Dr.-Ing. Siegfried Beichter

(Prokurist Leiter Qualität)

Anhang C1

Minimale Verankerungslänge und minimale Übergreifungslänge

Die minimale Verankerungslänge $\ell_{\text{b,min}}$ und die minimale Übergreifungslänge $\ell_{\text{0,min}}$ gemäß EN 1992-1-1 ($\ell_{\text{b,min}}$ nach Gl. 8.6 und Gl. 8.7 und $\ell_{\text{0,min}}$ nach Gl. 8.11) müssen mit dem Erhöhungsfaktor α_{lb} nach Tabelle C1 multipliziert werden.

Tabelle C1: Erhöhungsfaktor α_{lb}

Betonfestigkeitsklasse	Bohrverfahren	Erhöhungsfaktor α _{lb}
C12/15 bis C50/60	Hammerbohren, Saugbohren oder Pressluftbohren	1,0
	Diamantbohren	1,5

Tabelle C2: Bemessungswerte der Verbundspannung f_{bd}¹⁾

Betonstahl Zuganker ZA		Betonfestigkeitsklasse								
		C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Bemessungswert der Verbundspannung fbd										
Hammerbohren, Saugbohren oder Pressluftbohren	[N/mm²]	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
Diamantbohren	[N/mm²]	1,6	2,0	2,3	2,7	3,0	3,0	3,4	3,7	3,7

Mit η_i =1,0 gemäß EN 1992-1-1 für gute Verbundbedingungen (für alle anderen Verbundbedingungen sind die Werte mit 0,7 zu multiplizieren)

Anhang C2

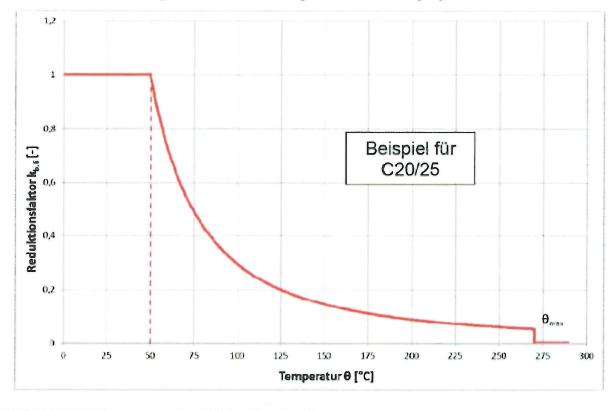
Bemessungswert der Verbundspannung f_{bd,fi} unter Brandbeanspruchung in den Betonfestigkeitsklassen C12/15 bis C50/60 (alle Bohrverfahren):

Der Bemessungswert der Verbundspannung $f_{bd,fi}$ unter Brandbeanspruchung ist nach folgender Gleichung zu berechnen:

$$\begin{split} f_{bd,fi} &= k_{b,fi}(\theta) \cdot f_{bd} \cdot \gamma_c \, / \, \gamma_{M,fi} \\ &\text{mit:} \quad \theta \leq 270\,^{\circ}\text{C:} \quad k_{b,fi}(\theta) = 9221,2\,^{\circ}\,\theta^{-1,747} / \, (f_{bd}\,^{*}\,4,3) \, \leq \, 1,0 \\ &\theta > 270\,^{\circ}\text{C:} \quad k_{b,fi}(\theta) = 0 \\ &f_{bd,fi} & \text{Bemessungswert der Verbundspannung unter Brandsbeanspruchung in N/mm}^{2} \\ &\theta & \text{Temperatur in °C in der Mörtelfuge} \end{split}$$

 $k_{b,h}(\theta)$ Reduktionsfaktor unter Brandbeanspruchung

f_{bd} Bemessungswert der Verbundspannung in N/mm² im kalten Zustand gem. Tabelle


C2 in Abhängigkeit von Betonfestigkeitsklasse, Stabdurchmesser, Bohrverfahren

und Verbundbereich gem. EN 1992-1-1

 γ_c Widerstandsbeiwert gemäß EN 1992-1-1 $\gamma_{M,li}$ Widerstandsbeiwert gemäß EN 1992-1-2

Für den Nachweis unter Brandbeanspruchung sind die Verankerungslängen nach EN 1992-1-1:2004+AC:2010 Gleichung 8.3 mit der temperaturabhängigen Verbundspannung f_{bd,n} zu ermitteln.

Bild C1: Beispielkurve des Reduktionsfaktors k_{b,fi}(θ) in Betonfestigkeitsklasse C20/25 bei guten Verbundbedingungen

Anhang C3

Tabelle C3: Charakteristische Zugtragfähigkeit unter Brandbeanspruchung, Zuganker ZA, Betonfestigkeitsklasse C12/15 bis C50/60, gemäß Technical Report TR 020

Zuganker ZA				M12	M16	M20	M24	
Stahl verzinkt								
Charakteristische Zugtragfähigkeit	R30	•	[N/mm²] -	20				
	R60			15				
	R90	G Rk,s fi		13				
	R120				10	0		
Nichtrostender St	ahl A4, H	CR						
Charakteristische Zugtragfähigkeit	R30		[N/mm²] -		30	0		
	R60			25				
	R90	- σ _{Rk,s,fi}		20				
	R120				10	3		

Bemessungswert der Stahlspannung σ_{Rd,s,fl} unter Brandbeanspruchung für den Zuganker ZA

Der Bemessungswert der Stahlspannungen $\sigma_{\text{Rd,s,fl}}$ unter Brandbeanspruchung wird gemäß folgender Formel berechnet:

 $\sigma_{Rd,s,fi} = \sigma_{Rk,s,fi} / \gamma_{M,fi}$

mit:

ORk,s,fi

Charakteristische Zugtragfähigkeit gemäß Tabelle C3

YM, fi

Widerstandsbeiwert unter Brandbeanspruchung gemäß EN 1992-1-2